Year 12 Maths - Pure and Mechanics Teacher

Topic		Ref	Ex
Quadratics	Solving Quadratic Equations - By factorising - Using the formula - By completing the square - Using the calculator function - Find and interpret the discriminant of a quadratic expression - Solving equations that can be transformed into a quadratic using a substitution.	P2.3	$\begin{aligned} & \hline \text { P2A } \\ & \text { P2B } \\ & \text { P2C } \\ & \text { P2D } \\ & \text { P2E } \\ & \text { P2F } \end{aligned}$
	Quadratic Graphs - Write a quadratic in completed square form. Use this form to identify the vertex of a quadratic and to sketch the curve.	P2.3	P2D
	Modelling with Quadratics - Use and apply models that involve quadratic functions	P2.3	P2F
Simultaneous Equations	Linear Simultaneous Equations - Solve linear simultaneous equations using elimination or substitution. Interpretation as finding point of intersection of straight lines.	P2.4	P3A
	One Linear, One Quadratic - Solving a pair of simultaneous equations involving one linear and one quadratic equation. - Use of discriminant to solve problems involving the intersection of a straight line and a quadratic graph. - Interpret algebraic solutions graphically.	P2.4	$\begin{aligned} & \text { P3B } \\ & \text { P3C } \end{aligned}$
Inequalities	Linear Inequalities Solution of linear inequalities, including brackets, fractions and negative numbers - Represent solutions on a number line	P2.5	$\begin{aligned} & \text { P3D } \\ & \text { P3F } \end{aligned}$
	Quadratic Inequalities - Solution of quadratic inequalities, including those with x in the denominator of a fraction.	P2.5	P3E
	Set Notation - Express solutions through the correct use of 'and' and 'or', or through set notation e.g. $\{x: a<x\} \cap\{x: x<b\}$	P2.5	$\begin{aligned} & \text { P3D } \\ & \text { P3E } \end{aligned}$
	Inequalities on Graphs - Represent linear and quadratic inequalities graphically by shading regions	P2.5	$\begin{aligned} & \hline \text { P3F } \\ & \text { P3G } \end{aligned}$
Graphs and Transformations	Important Graphs Know the shape of be able to sketch the following graphs: - Cubic graphs - Quartic graphs - Reciprocal graphs of the form $y=a / x$ and $y=a / x^{2}$	P2.7	$\begin{aligned} & \text { P4A } \\ & \text { P4B } \\ & \text { P4D } \end{aligned}$
	Solutions to Equations - Use intersection points of graphs to solve equations. - Interpret algebraic solution of equations graphically	P2.7	P4A P4B P4D

Year 12 Maths - Pure and Mechanics Teacher

Topic		Ref	Ex
Graphs and Transformations (cont.)	Transformations of Graphs - Understand the effect of simple transformations on the graph of $y=\mathrm{f}(x)$ including sketching the associated graphs. - Transformations will be of the form: $y=a \mathrm{f}(x), y=\mathrm{f}(x)+a, y=\mathrm{f}(x+a), y=\mathrm{f}(a x)$, where a is a constant. - Be able to express the transformations involved in terms of translations, reflections and stretches.	P2.8	$\begin{aligned} & \hline \text { P4E } \\ & \text { P4F } \end{aligned}$
Quantities and Units in Mechanics	Language of Kinematics - understand the concept of a mathematical model, and be able to abstract from a real-world situation to a mathematical description (model); - know the language used to describe simplifying assumptions; - understand the particle model; - be familiar with the basic terminology for mechanics; - be familiar with commonly-made assumptions when using these models; - understand and use fundamental quantities and units in the S.I. system: length, time and mass; - Understand that units behave in the same way as algebraic quantities, e.g. meters per second is $\mathrm{m} / \mathrm{s}=\mathrm{m} \times 1 / \mathrm{s}=\mathrm{ms}-1$	A6. 1	A8A A8B A8C A8D
Kinematics Graphs (constant acceleration)	- Understand and use the language of kinematics: position; displacement; distance travelled; velocity; speed; acceleration. - Understand, use and interpret graphs in kinematics for motion in a straight line: - displacement against time and interpretation of gradient - velocity against time and interpretation of gradient and area under the graph	A7.1	$\begin{aligned} & \text { A9A } \\ & \text { A9B } \end{aligned}$
Assessment 1			
Coordinate Geometry Straight Lines	Straight lines - Calculate the gradient of a line joining a pair of points. - Find the equation of a straight line given (i) a gradient and a point or (ii) two points - Understand and use the equation of a straight line including the forms: $y-y_{1}=m\left(x-x_{1}\right) \text { and } a x+b y+c=0$ - Find the length and midpoint of a line segment given the coordinates of its endpoints. - Equations of parallel and perpendicular lines - Use straight line graphs to construct mathematical models	P3. 1	P5A P5B P5C P5D P5E P5F P5G P5H

Year 12 Maths - Pure and Mechanics Teacher

Topic		Ref	Ex
Coordinate Geometry Circles	Equation of a circle - Know how to find the equation of a circle in the form: $(x-a)^{2}+(y-b)^{2}=r^{2}$ - use the equation of a circle in expanded form $x^{2}+y^{2}+2 g x+2 f y+c=0$ and identify the centre and radius of the circle by completing the square	P3.2	$\begin{aligned} & \text { P6A } \\ & \text { P6B } \end{aligned}$
	Problems involving circles - Solve problems involving circles, tangents and straight lines. - Know the following circle properties: the angle in a semicircle is a right angle; the perpendicular from the centre to a chord bisects the chord; the perpendicularity of radius and tangent. Use these to help solve problems involving circles.	P3.2	$\begin{aligned} & \text { P6C } \\ & \text { P6D } \\ & \text { P6E } \\ & \text { P6F } \end{aligned}$
Kinematics Equations (constant acceleration)	SUVAT Equations - Understand and derive the formulae for constant acceleration for motion in a straight line SUVAT - Recognise when it is appropriate to use the SUVAT formulae for constant acceleration - Solve kinematics problems using constant acceleration formulae - Understand and use weight and motion in a straight line under gravity; gravitational acceleration, g, and its value in S.I. units to varying degrees of accuracy - Solve problems involving vertical motion under gravity.	$\begin{aligned} & \text { A7.2 } \\ & \text { A7.3 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { A9C } \\ \text { A9D } \\ \text { A9E } \end{array}$
Assessment 2			
Vectors in 2D	Definitions and arithmetic operations - Use vectors in two-dimensions in column vector form and \mathbf{i}, \mathbf{j} unit vector form. - Calculate the magnitude and direction of a vector - Convert between component form and magnitude/direction form. - Add vectors diagrammatically and perform the algebraic operations of vector addition and multiplication by scalars, and understand their geometrical interpretations.	$\begin{aligned} & \hline \text { P9.1 } \\ & \text { P9. } 2 \\ & \text { P9.3 } \end{aligned}$	$\begin{array}{\|l} \hline \text { P11A } \\ \text { P11B } \\ \text { P11C } \end{array}$
	Position vectors and modelling with vectors - Understand and be able to use position vectors, know that $\overrightarrow{A B}=b-a$ - Calculate the distance between two points represented by position vectors - Find the position vector of a point C dividing AB in a given ratio - Use familiar shapes to illustrate the difference between 2 vectors and vector addition, e.g. parallelogram, rectangle. - Use vectors to solve problems in context including speed and distance calculations	$\begin{aligned} & \text { P9. } 4 \\ & \text { P9. } \end{aligned}$	$\begin{array}{\|l} \hline \text { P11D } \\ \text { P11E } \\ \text { P11F } \end{array}$

Year 12 Maths - Pure and Mechanics Teacher

Topic		Ref	Ex
Integration	Indefinite Integrals - Understand integration as the reverse process of differentiation - be able to integrate x^{n} (excluding $\mathrm{n}=-1$), and related sums, differences and constant multiples - Understand the need for +C - Given $\mathrm{f}^{\prime}(x)$ and a point on the curve, find an equation of the curve in the form $y=\mathrm{f}(x)$.	$\begin{aligned} & \hline \text { P8.1 } \\ & \text { P8.2 } \end{aligned}$	$\begin{aligned} & \hline \text { P13A } \\ & \text { P13B } \\ & \text { P13C } \end{aligned}$
	Definite Integrals - Be able to evaluate definite integrals using correct notation - Use a definite integral to find the area bounded by a curve and the x-axis - Find areas bounded by curves and straight lines	P8.3	$\begin{aligned} & \hline \text { P13D } \\ & \text { P13E } \\ & \text { P13F } \\ & \text { P13G } \end{aligned}$
Forces and Newton's Laws	Newton's Second Law - Understand and use Newton's second law F = ma for motion in a straight line (no resolving forces) - Solve problems involving motion in a straight line with constant acceleration in vector form, where the forces are given in \mathbf{i}, \mathbf{j} form or as column vectors	A8. 2	$\begin{aligned} & \text { A10A } \\ & \text { A10B } \end{aligned}$
	Newton's Third Law - Understand and use Newton's third law; equilibrium of forces on a particle and motion in a straight line; - Solve problems involving connected particles which can be considered as a whole system or separate parts. - Solve problems involving smooth pulleys.	A8.4	A10C A10D A10E A10F
Assessment 3			

Year 12 Maths - Pure and Mechanics Teacher

Topic		Ref	Ex
Kinematics 2 (Variable acceleration)	Determine Rates of Change for kinematics - Understand that displacement, velocity and acceleration may be given as functions of time - Use calculus (differentiation) in kinematics to model motion in a straight line for a particle moving with variable acceleration; - Understand that gradients of the relevant graphs link to rates of change; - Know how to find max and min velocities by considering zero gradients and understand how this links with the actual motion (i.e. acceleration $=0$).	A7.4	A11A A11B A11C
	Use of Integration for Kinematics problems - Use calculus (integration) in kinematics to model motion in a straight line for a particle moving under the action of a variable force; - Understand that the area under a graph is the integral, which leads to a physical quantity; - Know how to use initial conditions to calculate the constant of integration and refer back to the problem.	A7.4	A11D
	Constant Acceleration Formulae - Use calculus to derive the constant acceleration formulae	A7.4	A11E
Exponentials and Logarithms	Exponential Functions - Sketch graphs of the form $y=a^{x}$ and $y=e^{x}$, and transformations of these graphs. $(a>0)$ - Understand the difference in shape between $\mathrm{a}>1$ and $\mathrm{a}<1$. - Know that the gradient of e^{kx} is equal to $k e^{\mathrm{kx}}$ and hence understand why the exponential model is suitable in many applications - Use and interpret models that use exponential functions - exponential growth and decay.	$\begin{aligned} & \hline \text { P6.1 } \\ & \text { P6.2 } \\ & \text { P6.7 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { P14A } \\ \text { P14B } \\ \text { P14C } \end{array}$
Exponentials and Logarithms (cont.)	Logarithms - Know and be able to use the definition of $\log _{a} n=x$ as equivalent to $\mathrm{a}^{\mathrm{x}}=\mathrm{n}$, where a is positive and $x \geq 0$ - Understand and use the laws of logarithms - Solve equations of the form $a^{x}=b$ - Know and be able to use the natural logarithm function In x and its graph - Use logarithms to estimate the values of constants in non-linear models of the form $y=a x^{n}$ and $y=k b^{x}$, given data for x and y	$\begin{aligned} & \text { P6.3 } \\ & \text { P6.4 } \\ & \text { P6.5 } \\ & \text { P6.6 } \end{aligned}$	$\begin{aligned} & \text { P14D } \\ & \text { P14E } \\ & \text { P14F } \\ & \text { P14G } \\ & \text { P14H } \end{aligned}$
	Assessment 4		

